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Abstract. This paper describes an overview on the cryptography used in the
Signal Protocol, implemented in messaging apps like Signal and WhatsApp,
that provides End to End Encryption (E2EE). This paper will focus on two
essential algorithms used in the protocol: the Extended Triple Diffie-Hellman
(X3DH) for key agreement between two users, and the Double Ratchet
algorithm for key management and derivation. It also discusses possible
vulnerabilities of these two algorithms and how the protocol aims to fix those
weaknesses. The paper focuses on the conversation between two parties mode,
since group messages use other heuristics and algorithms to ensure E2EE. By
the end, the paper exposes features of the protocol that will be implemented in
the future.

1. Introduction

The Signal Protocol is a End to End Encryption (E2EE) protocol used in messaging
apps like WhatsApp and Signal itself. The protocol is non-federated and the whole
encryption algorithm happens on the devices of the parties that are communicating, so
the server or man-in-the-middle attacks are unable to decrypt messages. First introduced
by Open Whisper Systems in 2013, the open-source protocol is maintained by the
Signal Foundation, founded by Brian Acton, co-founder of WhatsApp, and Moxie
Marlinspike, one of the original authors of the Signal protocol.

The Signal Protocol consists mainly of two algorithms: the Extended Triple
Diffie-Hellman [1] and the Double Ratchet [2]. The first is responsible for initiating a
Signal Protocol session by using an extended version of the Elliptic Curve
Diffie-Hellman (ECDH) algorithm that works with asynchronous environments and with
an extra layer for authentication, and the later is responsible for managing keys between
two parties, so one party can encrypt a message and the other can derive a key to
decrypt the same one.

2. Extended Triple Diffie-Hellman (X3DH)

The Extend Triple Diffie-Hellman (X3DH) is an algorithm that aims to share a secret
between two parties in an insecure channel. It's based on the classic ECDH [3][4] but
has extended features such as: works within asynchronous communication, provides
forward secrecy and cryptographic deniability, uses one round trip instead of two and
also ensures authentication.



2.1. Curve

The X3DH implementation on libsignal is based on the X25519, an ECDH version
using the Curve25519 [5]. The protocol can be used with X448 as well, but for the sake
of simplicity the paper will only handle the X25519 case.

The Curve25519 elliptic curve used is a Montgomery curve and has the equation

defining a prime field over the prime .𝑦2 =  𝑥3 +  486662𝑥2 +  𝑥 𝑝 = 2255 − 19
The X25519 uses the compressed elliptic form, using only the -coordinate of each𝑥
curve point. Because of that, the generator used is , defining a cyclic subgroup𝐺 = 9
whose order is prime. The cofactor is , so that means that the prime group defined𝑙 = 8
by Curve25519 has of the points of the original elliptic curve. By design, the curve1/8
is immune to timing attacks and any 32-byte string is accepted as a valid public key;
verification to check if the point belongs to the curve is not necessary.

Figure 1. Curve25519 representation.

2.2 Keys

In the X3DH context, each user has a group of X25519 key pairs in which public keys
are shared in a server with other users. A long-term identity keypair ( , )𝐼𝐾

𝑝𝑢𝑏
𝐼𝐾

𝑝𝑟𝑖𝑣
identifies the user, providing authentication when used with a trusted server. In
WhatsApps's case, the keypair keypair ( , ) is only replaced when the app is𝐼𝐾

𝑝𝑢𝑏
𝐼𝐾

𝑝𝑟𝑖𝑣
reinstalled, deleted or registered in a new device [6].

A short-term signed prekey keypair ( ), which adds a layer for𝑆𝑃𝐾
𝑝𝑢𝑏

,  𝑆𝑃𝐾
𝑝𝑟𝑖𝑣

forward secrecy and ensures uniqueness to the X3DH shared secret output, is also used
in the agreement. It's called prekey to make it explicit that these keys are used for the
protocol usage only and are shared to the server prior to any new Signal Protocol
session. is signed, so when Alice gets Bob's , Alice can verify if it's𝑆𝑃𝐾

𝑝𝑢𝑏
𝑆𝑃𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
actually from Bob by also fetching Bob's signature, signed with Bob's𝑆𝑃𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
, , and verifying its signature. This𝐼𝐾

𝑝𝑟𝑖𝑣, 𝐵𝑜𝑏
𝑆𝑖𝑔(𝐼𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
,  𝐸𝑛𝑐𝑜𝑑𝑒(𝑆𝑃𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
))



keypair is reset on a periodic timed basis. The encode function compresses the elliptic
curve to a byte string so it can be more easily signed.

A short-term one-time prekey keypair ( ), ensures forward𝑂𝑃𝐾
𝑝𝑢𝑏

,  𝑂𝑃𝐾
𝑝𝑟𝑖𝑣

secrecy by adding one extra layer to randomness on the X3DH shared secret output, so
two X3DH agreements do not produce the same result. Once used, it should be deleted
from the server (the public key) and deleted from the owner's device (private key), and
replaced with new ones (normally, there's a collection of published on the𝑂𝑃𝐾

𝑝𝑢𝑏
server to ensure many parties can initiate a conversation using these keys). The use of
this keypair is recommended in the calculation of the X3DH output, but it's not required.

A ephemeral keypair ( ) is also used, but is only generated when𝐸𝐾
𝑝𝑢𝑏

, 𝐸𝐾
𝑝𝑟𝑖𝑣

Alice is initiating a session, by sending a message to Bob, and it is not shared prior to
the communication. That way, Alice uses in the X3DH output calculation and𝐸𝐾

𝑝𝑟𝑖𝑣
sends along with the encrypted message to Bob, therefore he can calculate the𝐸𝐾

𝑝𝑢𝑏
same X3DH agreement and decrypt the message. The Table 1 summarizes the cited
keypairs used in a X3DH agreement.

Table 1. Variables to be considered on the evaluation of interaction techniques

Symbol Type Description

( )𝐼𝐾
𝑝𝑢𝑏

,  𝐼𝐾
𝑝𝑟𝑖𝑣

long-term Identity key of a user. Do not expire
unless it's compromised.

( ),𝑆𝑃𝐾
𝑝𝑢𝑏

,  𝑆𝑃𝐾
𝑝𝑟𝑖𝑣

𝑆𝑖𝑔(𝐼𝐾
𝑝𝑢𝑏

,  𝐸𝑛𝑐𝑜𝑑𝑒(𝑆𝑃𝐾
𝑝𝑢𝑏

))

short-term Signed prekey along with its
signature, so it can be later verified its
true authenticity.

( )𝑂𝑃𝐾
𝑝𝑢𝑏

,  𝑂𝑃𝐾
𝑝𝑟𝑖𝑣

short-term One-time prekey. Deleted from server
and after usage.

( )𝐸𝐾
𝑝𝑢𝑏

, 𝐸𝐾
𝑝𝑟𝑖𝑣

short-term Ephemeral keys, not shared prior to
the initialization message, but
generated when a session is
initialized.

2.3 The agreement

With these keys, after the end of a successful protocol run, two parties, Alice and Bob,
will be able to calculate a shared 32-byte secret key . The protocol consists on Alice𝑆𝐾
fetching Bob's keys from the server, which were published prior to Alice initiating the
communication, then calculating the secret and encrypting her first message to Bob𝑆𝐾
with the same secret. Bob when receiving the message, along with some keys from
Alice, will be able to calculate the same secret and decrypt the message.𝑆𝐾

Before an agreement starts, each user has to publish their public keys to the
server for authentication and to make sure other users can find each other. Each user has
to publish their identity key, signed prekey, prekey signature signed with the identity



key, and a set of one-time prekeys. In the Alice and Bob example, Bob will publish his
identity key , his signed prekey and its key signature𝐼𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
𝑆𝑃𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
, and, a collection of this one-time prekeys𝑆𝑖𝑔(𝐼𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
,  𝐸𝑛𝑐𝑜𝑑𝑒(𝑆𝑃𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
))

, , … After that, Bob can be found by other𝑂𝑃𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏, 1

𝑂𝑃𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏, 2

𝑂𝑃𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏, 3

users through the server and it's able to receive messages.

Once Bob has published these keys, Alice can initiate a Signal Protocol session
by fetching Bob's identity key , signed prekey , prekey signature𝐼𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
𝑆𝑃𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
, and, if available on the server, a one-time prekey𝑆𝑖𝑔(𝐼𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
,  𝐸𝑛𝑐𝑜𝑑𝑒(𝑆𝑃𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
))

. If the is fetched, then it should be deleted by the server𝑂𝑃𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏, 1

𝑂𝑃𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏, 1

right after to provide forward secrecy. Alice then verifies signature using𝑆𝑃𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏

. If the signature verification fails, then Alice𝑆𝑖𝑔(𝐼𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏

,  𝐸𝑛𝑐𝑜𝑑𝑒(𝑆𝑃𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏

))
aborts the session and tries again.

With Bob's keys, Alice can then start the Diffie-Hellman agreement to generate
the secret to encrypt the first message to send to Bob. For this, Alice generates a𝑆𝐾
ephemeral elliptic curve keypair ( ) and calculates the following𝐸𝐾

𝑝𝑢𝑏, 𝐴𝑙𝑖𝑐𝑒
, 𝐸𝐾

𝑝𝑟𝑖𝑣, 𝐴𝑙𝑖𝑐𝑒
elliptic curve multiplications used in ECDH. At last, Alice concatenates each
Diffie-Hellman calculation and derives the key using a key derivation function (KDF),
resulting in :𝑆𝐾

𝐷𝐻
1

= 𝐷𝐻(𝐼𝐾
𝑝𝑟𝑖𝑣, 𝐴𝑙𝑖𝑐𝑒

,  𝑆𝑃𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏

)

𝐷𝐻
2

= 𝐷𝐻(𝐸𝐾
𝑝𝑟𝑖𝑣, 𝐴𝑙𝑖𝑐𝑒

, 𝐼𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏

)

𝐷𝐻
3

= 𝐷𝐻(𝐸𝐾
𝑝𝑟𝑖𝑣, 𝐴𝑙𝑖𝑐𝑒

, 𝑆𝑃𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏

)

𝑆𝐾 = 𝐾𝐷𝐹(𝐷𝐻
1
||𝐷𝐻

2
||𝐷𝐻

3
)

If Alice had been successful on obtaining a one-time prekey from Bob,
, then it calculates as an extra layer for forward secrecy:𝑂𝑃𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏, 1
𝐷𝐻

4

𝐷𝐻
3

= 𝐷𝐻(𝐸𝐾
𝑝𝑟𝑖𝑣, 𝐴𝑙𝑖𝑐𝑒

, 𝑂𝑃𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏, 1

)

𝑆𝐾 = 𝐾𝐷𝐹(𝐷𝐻
1
||𝐷𝐻

2
||𝐷𝐻

3
||𝐷𝐻

4
)

It's possible to notice that while and provide mutual authentication𝐷𝐻
1

𝐷𝐻
2

using identity, signed and owned ephemeral keys, and are responsible for𝐷𝐻
3

𝐷𝐻
4

providing forward secrecy since the arguments of both Diffie-Hellman calculations are
using short-term use keys. Alice then delete all Diffie-Hellman calculations after finding

.𝑆𝐾

Alice will then send an initial message containing her identity key ,𝐼𝐾
𝑝𝑢𝑏, 𝐴𝑙𝑖𝑐𝑒

her public part of her ephemeral key , which one-time prekey𝐸𝐾
𝑝𝑢𝑏, 𝐴𝑙𝑖𝑐𝑒

𝑂𝑃𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏

from Bob she used, and, an initial message with associated data encrypted using the



Encrypt-then-MAC [7] approach, with AES-256-CTR [8] using as a key and an𝑆𝐾
authentication tag generated from the ciphertext using HMAC-256 [9][10] using a
derivation from . The associated data contains the identity of both parties, that means𝑆𝐾

but it can also contain additional𝐴𝐷 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐼𝐾
𝑝𝑢𝑏, 𝐴𝑙𝑖𝑐𝑒

)||𝐸𝑛𝑐𝑜𝑑𝑒(𝐼𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏

)
information, like certificates. After sending the message, Alice deletes the keys used for
encryption.

When Bob receives the message, he is able to decrypt Alice's message
calculating the following Diffie-Hellman agreements:

𝐷𝐻
1

= 𝐷𝐻(𝐼𝐾
𝑝𝑢𝑏, 𝐴𝑙𝑖𝑐𝑒

,  𝑆𝑃𝐾
𝑝𝑟𝑖𝑣, 𝐵𝑜𝑏

)

𝐷𝐻
2

= 𝐷𝐻(𝐸𝐾
𝑝𝑢𝑏, 𝐴𝑙𝑖𝑐𝑒

, 𝐼𝐾
𝑝𝑟𝑖𝑣, 𝐵𝑜𝑏

)

𝐷𝐻
3

= 𝐷𝐻(𝐸𝐾
𝑝𝑢𝑏, 𝐴𝑙𝑖𝑐𝑒

, 𝑆𝑃𝐾
𝑝𝑟𝑖𝑣, 𝐵𝑜𝑏

)

𝑆𝐾 = 𝐾𝐷𝐹(𝐷𝐻
1
||𝐷𝐻

2
||𝐷𝐻

3
)

If Alice had been successful on obtaining a one-time prekey from Bob,
, Bob will acknowledge which key Alice used when he got the message𝑂𝑃𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏, 1
from her, then it calculates :𝐷𝐻

4

𝐷𝐻
3

= 𝐷𝐻(𝐸𝐾
𝑝𝑢𝑏, 𝐴𝑙𝑖𝑐𝑒

, 𝑂𝑃𝐾
𝑝𝑟𝑖𝑣, 𝐵𝑜𝑏, 1

)

𝑆𝐾 = 𝐾𝐷𝐹(𝐷𝐻
1
||𝐷𝐻

2
||𝐷𝐻

3
||𝐷𝐻

4
)

With the secret to decrypt Alice's message, Bob needs to also check the𝑆𝐾
associated data using his and Alice's identity keys. Bob tries to decrypt the message𝐴𝐷
using both and , if it fails, Bob aborts the protocol run. After that, Bob deletes all𝑆𝐾 𝐴𝐷
Diffie-Hellman calculations and secrets to provide forward secrecy.

2.4 Cryptanalysis

The X3DH algorithm is a great solution for asynchronous key exchange, but some
problems can be identified. Authentication relies on the server trust, but it still can be
affected by man-in-the-middle attacks. If authentication is not fully performed, the
parties have no cryptographic guarantee as to who they are communicating with. To
solve this, many applications use some form of public key fingerprint where they can
compare or scan with a QR Code. WhatsApp fix this problem with security codes, by
displaying a 60-digit fingerprint where and𝐹 𝐹 = 𝐸𝑛𝑐𝑜𝑑𝑒(𝐼𝐾

𝑝𝑢𝑏, 𝐴𝑙𝑖𝑐𝑒
|| 𝐼𝐾

𝑝𝑢𝑏, 𝐵𝑜𝑏
)

and are respectively Alice's and Bob's device's identity keys. The𝐼𝐾
𝑝𝑢𝑏, 𝐴𝑙𝑖𝑐𝑒

𝐼𝐾
𝑝𝑢𝑏, 𝐵𝑜𝑏

Figure 2 displays how this fingerprint is displayed in the WhatsApp app.

http://refe


Figure 2. WhatsApp app displaying a security code for a two-party
conversation.

The algorithm is also susceptible to protocol replays, allowing key reuse. If
Alice's initial message doesn't use a one-time prekey, it may be replayed to Bob and he
will accept it. Another consequence of replays is that a successfully replayed initial
message would cause Bob to derive the same in different protocol runs. To mitigate𝑆𝐾
this, a post-X3DH protocol may wish to quickly negotiate a new encryption key for
Alice. The Double Ratchet algorithm aims to fix this.

Besides these issues, the X3DH has the privacy feature of providing
cryptographic deniability. That said, unless with access to the end devices, it's not
possible to prove that Alice talked with Bob and vice-versa. Bob places his prekey and
its signature on a public server that anyone can access. Thus, Bob's keys are not bound
to any specific peer, and cannot be used as a proof that Bob communicated with anyone.
Bob can deny his involvement in the communication by claiming that his actions were
based on Alice's ephemeral key. Alice can deny her involvement based on her ephemeral
key because it's deleted by the protocol after the use and it's not signed or identify her in
any aspect.



3. The Double Ratchet Algorithm

The Double Ratchet is an algorithm where two parties can exchange encrypted
messages based on shared secret keys that update frequently. It's called "The Double
Ratchet" because the algorithm is based on a ratchet construct, a one-way function chain
where the output is used as the input for the next ratchet step and can't be reversed. For
this, Key-Derivation-Functions (KDFs) chains are used. The Double Ratchet, as the
name suggests, uses two ratchets that interact with each other: the symmetric-key
ratchet and the Diffie-Hellman ratchet.

3.1. Key derivation function chains

Key derivation functions are cryptographic algorithms that takes a secret and some input
data, and derive it using a pseudo-random function and outputs a new key. The output is
indistinguishable from the provided key and appears totally random. The KDFs are
often used to generate new keys or convert keys to new ones of a specific length. Signal
Protocol uses the HMAC and the HKDF [11] algorithms as KDFs, and when used with
secure hash functions, satisfies the pseudorandom function family definition [12]: (I)
Resilience (output looks random to an observer with no knowledge of the internal state);
(II) Forward security (Past output of the generator looks random to an observer, even if
the observer learns the internal state at a later time); (III) Backward security/Break-in
recovery (Future output of the generator looks random, even to an observer with
knowledge of the current state). A KDF chain is when the output from a KDF is partly
used as an input for another KDF iteration and so on (Figure 3).

Figure 3. A Key derivation function chain.

In a Double Ratchet session between Alice and Bob, each party stores three
chains: a root chain, a sending chain and a receiving chain. Alice's sending chain
matches Bob's receiving chain and vice versa.



3.2. Symmetric-key ratchet

Every message sent or received is encrypted with a unique message key. The message
keys are output keys from the sending and receiving KDF chains, depending if the party
is sending or receiving messages. The KDF inputs used in these two chains are constant,
since the break-in recovery property is maintained by the root chain, which will be
managed by the Diffie-Hellman ratchet. Message keys aren't used to derive any other
keys because the output of any of these two chains are split in two, the chain key and the
message key, and only the chain key is used for a new KDF iteration (Figure 4), or
better said, a symmetric-key ratchet step. Since message keys are not used to derive any
other keys, message keys can be stored without affecting the security of the future
message keys. This will be useful for handling out-of-order messages.

Figure 4. A Key derivation function chain.

For the symmetric-key ratchet chains, in the libsignal, main implementation of
the Signal Protocol, the HMAC-SHA-256 and HKDF-SHA-256 [13] algorithms are
used as KDFs. Both chain key and message key have the length of 32 bytes and both are
derived using HMAC-SHA-256, but the message key is later derived using
HKDF-SHA-256 and with a string literal constant as the input key material.

3.3. Diffie-Hellman ratchet

The Diffie-Hellman ratchet aims to solve the problem when an attacker steals one party's
sending and receiving chain keys, since the attacker will be able to compute all future
message keys and decrypt all future messages using the KDF construct in the sending
and receiving chains. The Double Ratchet algorithm uses the Diffie-Helman ratchet to
update chain keys in the symmetric-key ratchet based on Diffie-Hellman (DH) outputs.
That provides break-in recovery since the sending and receiving chains are often reset,
making new messages being encrypted with keys that derive from a new first key chain,
making an attacker that managed to get one party's chain key either sending or receiving
chains unable to derive future keys and decrypt future messages.

Each party generates a DH ratchet key pair, a Diffie-Hellman public and private
key. Every message exchange between Alice and Bob begins with a header containing



the sender's current DH ratchet public key. When this value changes, a DH ratchet step
is done to replace the receiver's current DH ratchet key pair with a new key pair. That
way, Alice and Bob take turns on replacing DH ratchet key pairs, providing break-in
recovery.

Alice can initiate a Double Ratchet session by fetching Bob's DH ratchet public
key (Figure 5). Alice then calculates the Diffie-Hellman agreement with her private key
from her DH ratchet key pair, which outputs a secret.

Figure 5. Alice's DH ratchet in a the initialization of a Double Ratchet session

Then Alice sends a message to Bob, with her DH ratchet public key included in
the header. Once Bob receives this message, Bob can perform a DH ratchet step
calculating the Diffie-Hellman agreement between his DH ratchet private key with
Alice's public one, which produces the same secret that Alice calculated in her previous
step. Bob then generates a new DH ratchet key pair and does another DH ratchet step
with the same public key from Alice, producing a new secret (Figure 6).

Figure 6. Bob's DH ratchet step when receiving Alice's messages

This new DH output produced by Bob can be reproduced by Alice when she
performs a new DH ratchet step. That's how Alice and Bob use the Diffie-Hellman
procedure along with the ratchet construct to share secrets that only Alice and Bob can



calculate, given that their keys are not compromised. Even if one key gets compromised,
the attacker will be able to have a short-lived secret, because Alice or Bob will do a new
DH ratchet step with a new DH public and private key pair, turning the compromised
key into an expired one. The shared secret that both Alice and Bob calculated in their
DH ratchet will be used by Bob to derive a receiving chain (from the symmetric-key
ratchet) that matches Alice's sending chain, which derived from the same secret. Bob
then uses his last DH output to generate a new sending chain to send messages to Alice
(Figure 7).

Figure 7. Bob's receiving chain should match Alice's sending chain after their
agreement using the DH ratchet. Alice can later derive a new receiving chain
that matches Bob's sending chain by performing a DH ratchet step.

In more detail, the DH outputs when the Diffie-Hellman agreements are
calculated are not the sending and receiving chain keys itself, but are derived to generate
these keys. For this, it uses the root chain described earlier, which uses the previous
KDF output generated by the root chain, called root key, along with the DH output as
the input key material, producing a new sending or receiving key and a new root key.
The KDF construct used in the root chain is the HKDF-SHA-256. Once Bob receives
Alice's message with her DH ratchet public key, Bob then calculates the Diffie-Hellman
agreement and uses the DH output as input key material in his root chain to derive a new
receiving chain key and a new root key. Later, Bob creates a new DH ratchet public and
private key pair, calculates a new DH output using Alice's public key and uses as input
key material in his root chain to derive a new sending chain key and a new root key
(Figure 8).



Figure 8. Bob's root chain when deriving new sending and receiving chain keys.

3.4. Double Ratchet

The algorithm uses the "Double Ratchet" as its title because it combines the
symmetric-key ratchet with the Diffie-Hellman ratchet. When a message is sent or
received, a symmetric-key ratchet step is performed to the corresponding (sending or
receiving) chain to derive the message key and a new corresponding chain key to be
used in other ratchet steps. When a new ratchet public key is received, a DH ratchet step
is executed prior to the symmetric-key ratchet step to replace the chain keys, resetting
the sending and receiving chains.

It's possible to understand how the algorithm works with the following example.
Alice wants to initiate a conversation with Bob. For that, Alice fetches Bob's DH ratchet
public key, and, with her DH ratchet public and private DH ratchet key pair, calculates
the Diffie-Hellman agreement and outputs a shared secret. This shared secret key is then
used in Alice's root chain to derive a new root key and a new chain key (Figure𝑅𝐾 𝐶𝐾
9). Since the old root key won't be used anymore, it is safe to delete it to provide
forward secrecy.

Figure 9. Alice's root, sending and receiving chain when Alice initiates a
conversation with Bob. Alice performs one DH ratchet step.

Alice wants then send her message to Bob. Alice performs a symmetric-key𝐴
1

ratchet step in her sending key chain using and derives a new chain key and the𝐶𝐾



message key to be used to encrypt (Figure 10). The old can be deleted since𝐴
1

𝐶𝐾
there's a new chain key for the sending chain.

Figure 10. Alice performs one symmetric-key ratchet step in her sending chain
to derive a new chain key and a new message key, used to encrypt .𝐴

1

Alice then receives message from Bob. That will cause Alice to execute one𝐵
1

DH ratchet step with the new Diffie-Hellman public key from Bob, that means deriving
a new key in the root chain to form the new receiving chain to obtain the key to decrypt

as well forming a new sending chain to respond to Bob (Figure 11).𝐵
1

Figure 11. Alice receives from Bob, resulting in a DH ratchet step which resets𝐵
1

both sending and receiving chain resulting from the new key derivation from root
chain, caused by two Diffie-Hellman calculations from Bob's public key contained in
message .𝐵

1

Alice then sends a message , receives a message and sends two more𝐴
2

𝐵
2

messages and (Figure 12). Alice will then perform three symmetric-key ratchet𝐴
3

𝐴
4

steps in her sending chain and one on her receiving chain. Since neither Alice or Bob
performed a DH ratchet step, the sending and receiving chains are not reset.



Figure 12. Alice sends to Bob, receives from Bob, then responds with and𝐴
2

𝐵
2

𝐴
3

to Bob again. The figure shows how many ratchet steps the sending and receiving𝐴
4

chains (symmetric-key ratchet steps) were performed.

3.5. Out-of-order messages

The algorithm also ensures that in case messages sent by Bob are not received in order
by Alice, messages can still be decrypted without losses on message keys order. For
this, each message header contains two parameters: , the message index in its current𝑁
chain, and, , the length (number of messages) in the previous chains. That way, if a𝑃𝑁
message arrives earlier than the one expected, message keys that will not be used to
decrypt the current message can be calculated and stored for future use when these
messages are received.

The two parameters (that can be 0, 1, 2…) and (which assume values𝑁 𝑃𝑁
1,2,3…) are used to determine which message keys need to be stored with the
following: if a DH ratchet step isn't triggered, then the difference between the received

and the length of the current receiving chain is the number of skipped messages in𝑁
that chain.:

 #{𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑘𝑒𝑦𝑠

] = 𝑁 −  #[𝑐ℎ𝑎𝑖𝑛
𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔

] ;

Where is the length of the collection of the message keys#[𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑘𝑒𝑦𝑠

]
to be stored and is the length of the current receiving chain. If a DH#[𝑐ℎ𝑎𝑖𝑛

𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔
]

ratchet step is triggered, then the difference between the received and the length of𝑃𝑁
the current receiving chain is the number of skipped messages in that chain. The
received is the number of skipped messages in the new receiving chain (i.e. the chain𝑁
after the DH ratchet step):

 #{𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑘𝑒𝑦𝑠

] = 𝑃𝑁 −  #[𝑐ℎ𝑎𝑖𝑛
𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔

] + 𝑁 ;



Imagine Alice receives from Bob prior to receive and . message's𝐵
4

𝐵
3

𝐵
2

𝐵
4

header will have and . That means that is the second message key in𝑁 = 1 𝑃𝑁 = 2 𝐵
4

the newest chain and the previous chain has two message keys. That said, being the𝐵
1

last message received by Alice, she will ratchet once in her receiving chain to store
message key for and then it will reset her receiving chain since a new one was𝐵

2
created by observing the parameter. By executing a DH ratchet step, the receiving𝑁
chain is reset and Alice can ratchet that same chain to derive . Lastly, Alice will then𝐵

3
be able to derive (Figure 13), and, when the previous messages arrive, the message𝐵

4
keys for those messages are already stored.

Figure 13. Alice's chains when she needs to handle out-of-order messages.

3.6. Cryptanalysis

One of the key factors of the Double Ratchet algorithm is to provide forward secrecy.
That means that in the future, if a key is compromised, then the algorithm prevents the
attacker from decrypting past and future messages. This is ensured by the
Diffie-Hellman calculations when a DH ratchet step is performed, resetting the sending
and receiving chains, not allowing the attacker to derive new keys either decrypt
messages in the past, since the KDF chains do not allow the attacker to find out which
was the key that derived from it.

One of the failures that the algorithm has is that an attacker could impersonate
one of the parties by using the compromised party's identity private key used in the
X3DH since it will be able to initiate a Double Ratchet session. Another failure was that
an attacker could abuse of the random number generators (RNGs) used to generate
Diffie-Hellman key pairs used in the Double Ratchet algorithm, allowing the attacker to
know which keypairs could be generated and from that calculate message-keys. Since
these two last vulnerabilities are failures where the attacker needs access to one party's



device or even manipulate the messaging app's implementation, the algorithm keeps
cryptographic sound status.

4. Future

The Signal Protocol is widely used in many messaging applications to provide
end-to-end encryption and has been more adopted over time. In 2017, researchers from
the University of Oxford, University of London, and, Canada's McMaster University
published an analysis of the protocol, concluding that the protocol was
cryptographically sound [14]. To provide security for the near future, the protocol needs
to be considered resistant to quantum computing. Since elliptic curves based
cryptography is vulnerable to this type of computation, the protocol the way it is can be
compromised.

To prevent this, Signal Foundation and the main implementation of the protocol
libsignal, is already adding post-quantum cryptography. In version v0.27.0 of libsignal
[15], the implementation finished adding post-quantum algorithms replacements such as
CRYSTAL-Kyber [16], the NIST standard candidate and a in-development
post-quantum algorithm called PQXDH (Post-Quantum Extended Diffie-Hellman),
which uses CRYSTAL-Kyber.
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